SORN: a Self-organizing Recurrent Neural Network
نویسندگان
چکیده
منابع مشابه
SORN: A Self-Organizing Recurrent Neural Network
Understanding the dynamics of recurrent neural networks is crucial for explaining how the brain processes information. In the neocortex, a range of different plasticity mechanisms are shaping recurrent networks into effective information processing circuits that learn appropriate representations for time-varying sensory stimuli. However, it has been difficult to mimic these abilities in artific...
متن کاملRM-SORN: a reward-modulated self-organizing recurrent neural network
Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network t...
متن کاملA Self-organizing Recurrent Neural Network
A recurrent neural network with a self-organizing structure based on the dynamic analysis of a task is presented in this paper. The stability of the recurrent neural network is guaranteed by design. A dynamic analysis method to sequence the subsystems of the recurrent neural network according to the fitness between the subsystems and the target system is developed. The network is trained with t...
متن کاملA recurrent self-organizing neural fuzzy inference network
A recurrent self-organizing neural fuzzy inference network (RSONFIN) is proposed in this paper. The RSONFIN is inherently a recurrent multilayered connectionist network for realizing the basic elements and functions of dynamic fuzzy inference, and may be considered to be constructed from a series of dynamic fuzzy rules. The temporal relations embedded in the network are built by adding some fee...
متن کاملA Self-organizing Recurrent Neural Network Based on Dynamic Analysis
A recurrent neural network with a self-organizing structure based on the dynamic analysis of a task is presented in this paper. The stability of the recurrent neural network is guaranteed by design. A dynamic analysis method to sequence the subsystems of the recurrent neural network according to the fitness between the subsystems and the target system is developed. The network is trained with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2009
ISSN: 1662-5188
DOI: 10.3389/neuro.10.023.2009